
J .  Fluid Mech. (1990). 301. 216, p p .  285-298 
Printed in  Great Britain 

285 

Natural convection in porous media: effect of weak 
dispersion on bifurcation 

By XIAOWEI S. HE A N D  JOHN G. GEORGIADIS 
Department of Mechanical Engineering and Materials Science, Duke University, 

Durham, ’PU’C 27706, USA 

(Received 4 August 1989 and in revised form 13 December 1989) 

We use weakly nonlinear analysis via a two-parameter expansion to study bifurcation 
of conduction into cellular convection of an internally heated fluid in a porous 
medium that forms a horizontal layer between two isothermal walls. The 
Darcy-Boussinesq model of convection is enhanced by including two nonlinear 
terms : (i) quadratic (Forchheimer) drag ; and (ii) hydrodynamic dispersion 
enhancement of the thermal conductivity described by a weak linear relationship 
between effective conductivity and local amplitude of filtration velocity. The impact 
of the second term on the shape of the bifurcation curve for two-dimensional rolls is 
profound in the presence of uniform volumetric heating. The resulting bifurcation 
structure is unlike any pitchfork bifurcations typical of the classical BBnard problem. 
Although direct experimental validation of the novel bifurcation is not available, we 
would like to register it as an alternative or a supplement to models of small 
imperfections, and as an attempt to account for the scatter of observed critical values 
for the first bifurcation. 

1. Introduction 
Studies of buoyancy-driven convection in gully saturated porous media are 

abundant in the fluid mechanicslheat transfer literature but they are also limited in 
scope. Although the porous medium typically consists of two components (a solid 
matrix saturated by a fluid phase), the majority of mathematical models treat it as 
a continuum. This simplification requires the definition of ‘effective ’ transport 
properties that are usually assumed to be constant, i.e. independent of the flow 
parameters. For example, an effective conductivity that depends on geometrical 
properties and the conductivities of the individual phases is assigned to a fluid- 
saturated porous medium. We shall refer to these as Darcian formulations. Only 
recently have non-Darcian models been implemented ; Rubin (1974) was the first 
author to study instabilities in the presence of (hydrodynamic) dispersion effects in 
mixed convection in porous media. Despite the fact that effective transport 
coefficients have been shown to depend on the local filtration velocity for disordered 
(Koch & Brady 1985; Georgiadis & Catton 1988a) and ordered media (Levee & 
Carbonell 1985; Koch et al. 1989), this dependence has been neglected a priori in 
natural convection flows. Notable exceptions are the studies by Neischloss & Dagan 
(1975), Kvernvold & Tyvand (1980), and Georgiadis & Catton (1988b) of the BBnard 
problem in porous media. This mathematical problem concerns the stability of a 
horizontal layer of fluid in a porous medium subject to a vertical temperature 
gradient and i t  can be mapped onto a variety of physical problems. 

10.2 
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In  horizontally unbounded porous layers that are confined between two 
impermeable walls and heated isothermally from below (refer to figure l ) ,  the onset 
of convection (first bifurcation) takes place in the form of two-dimensional rolls with 
the following critical parameters ( A  is the wavelength equal to the width of two 
counter-rotating rolls and L is the layer thickness) : 

where Ram is the porous-medium Rayleigh number. As it will become obvious in the 
following section, this Rayleigh number is based on two lengthscales : a macro- 
scopic length, L ,  and a microscopic length (the square root of the permeability, 
proportional to the pore size or bead diameter, d ) .  

Kvernvold & Tyvand (1980) incorporated a quadratic dispersion term in the 
energy equation and modified the linear stability regime for two-dimensional 
convection. Georgiadis & Catton (1988 b )  used a linear hydrodynamic dispersion 
model to study finite-amplitude convection in the porous-medium BBnard problem. 
Although two different models were used, the onset of convection proved to be 
independent of the dispersive effect in both cases. Experiments on ordered packed 
beds by Katto & Masuoka (1967) and Close, Symmons & White (1985) have verified 
that the first critical Rayleigh number, (l) ,  remains constant regardless of the bead 
diameter/layer thickness ratio (d /L)  of the packed beds (which affects the magnitude 
of the dispersive term). Such results seem to justify neglecting the dispersive effect 
in the study of the onset of convection in the porous BBnard problem. 

However, the experimental evidence of natural convection in an internally heated 
fluid in a porous layer exhibits a peculiar scatter near the onset of convection. A 
series of experimental investigations in particulate beds confined between an 
isothermal upper surface and an adiabatic lower wall have been conducted by 
Buretta & Berman (1976) ; Hardee & Nilson (1977) ; R,hee, Dhir & Catton (1978) ; and 
Kulacki & Freeman (1979). The measured critical Rayleigh numbers (based on the 
volumetric heat generation rate) are scattered within a 39% interval above the 
theoretical estimate given by Buretta & Berman (1976) based on Darcian model. 
Rhee et al. (1978) hypothesized that this discrepancy is caused by the non-uniformity 
of the thermal field induced by inductively heating heterogeneous media with much 
diffeient thermal conductivities (steel beads in water). 

We offer herein an alternative hypothesis which can explain the scatter in critical 
parameters. We propose a bifurcation analysis of the porous-medium B6nard 
problem with internal heating that will account for non-Darcian effects according to 
equations (2)-(4) of the next section. We try a double expansion in terms of the 
classical bifurcation parameter E and the dispersivity S (which is proportional to d / L  
according to equation (6)) and then follow the procedure outlined in Section 76 of the 
monograph by Joseph (1976). 

Our results show that the effect of dispersion on natural convection in this case is 
fundamentally different from the case without internal heat generation. In  the latter 
case, the relative importance of dispersion is expressed by the particle PBclet number 
(based on d )  which is low for a wide range of Rayleigh numbers above the critical, 
cf. Kvernvold & Tyvand (1980) ; Georgiadis & Catton (1988b). Furthermore, this 
work serves to suggest that non-Darcian natural convection models no longer be 
ignored (in the name of simplicity or mathematical tractability). 
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FIGURE 1 .  The porous-medium BBnard problem. Schematic of the two-dimensional cellular 
wave pattern. 

2. Mathematical formulation 
We consider buoyancy-driven flow in a fluid-saturated porous medium confined 

between two parallel horizontal plates, as shown in figure 1.  The medium is 
characterized by its uniform porosity 9, permeability, y ,  inertial resistance coefficient 
6 ,  and stagnant thermal diffusivity a, = k,/(pc),; k, is the effective stagnant 
conductivity of the medium, v is the kinematic viscosity, and (pc),  is the thermal 
capacity of the fluid. The medium is internally heated from distributed heat sources 
of strength Q. By non-dimensionalizing lengths, velocities, pressure, and temperature 
with L ,  am/L ,  pvam/L2, and AT = TL-Tu, respectively, the following governing 
equations and boundary conditions for the locally averaged (Darcy) velocity V and 
temperature T are obtained : 

‘ V .  v=o, (2) 
Ram 1 

= -VP+-Te,--  V-wlv  V ,  
1 av ~- 

$Pr, at Da Da (3) 

V.e,=O and T = l - z  a t  z = O , i ,  ( 5 )  

where Ram = g/3ATyL/(vam) is the (porous) external Rayleigh number, Da = y /L2  is 
the Darcy number, and Ra, = Ram QL2/(k, AT) is the internal Rayleigh number. t is 
the time and e, denotes the unit vector in the z-direction (vertical). 

In  the equations above, P is the local interstitial fluid pressure minus the 
hydrostatic component, and T is the local (average) temperature minus the upper 
wall temperature Tu. The relative importance of the inertial (Forchheimer) quadratic 
drag term in (3) is given by the magnitude of w = bL/yPr,, where the porous 
medium Prandtl number is defined as Pr, = v/a,. The standard Boussinesq 
approximation is made in the derivation of (2)-(4) ; its validity has been supported 
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by the work of Gartling & Hickox (1985). The momentum equation (3), which was 
supported on empirical basis by Ergun (1952), was derived by Georgiadis & Catton 
(1987) on the basis of a microscopic stochastic model of randomly packed beds. The 
slip conditions at the walls are consistent with the absence of Brinkman’s correction 
in the momentum equation (3). 

Georgiadis & Catton (198813) also supported the derivation of the energy equation 
(4) on the basis of the interstitial hydrodynamic field statistics in disordered media. 
It is assumed that the temperature of the fluid and solid phases are ‘locally’ equal; 
this is known as the ‘local thermal equilibrium ’ assumption. The tensor D* on the 
right-hand side of (4) accounts for the enhancement of heat transport due to 
dispersion and has been taken by Georgiadis & Catton ( 1 9 8 8 ~ )  to be isotropic. The 
ratio of dispersive to  stagnant conductivity is given by 

C d  & Trace {D*} = (---I q) = 61 
1-+L 

where 6 = Cd/( 1 - 9) L is the dispersivity. Notice that this parameter depends only 
on the ratio d / L  which is a measure of the coarseness of the packed bed (d represents 
the characteristic dimension of the pores or beads) ; 6 4 1 for most practical cases. 
The coefficient C depends on the statistics of the microstructure of the medium; 
Georgiadis & Catton (19886) used the value C = 0.36. 

The base (equilibrium) state of (2)-(5) is given by the pure heat conduction 
through the layer: 

6 = 0, (7)  

T, = -kz2 + (&I - 1)  z + 1 where 7 = Ra,/lRa,J. (8) 

After considering a perturbation ( U ,  O) on the base state ( 6, Tb), 

8 
V =  V,+U and T = T,+G, with R = 1Ra,lk, (9) n 

equations (2)-(4) and the boundary conditions (5) become 

DU au 
-- = -DuVP+ROe,- U - w ~ ~ ~ q  u, +Prm at 

-_ (pc)m ae - - - U - VO+RwG(z) + V28+6V - (I Ul VO) -R6V . (I Ul G ( z )  ez) ,  (12) ( P I ,  at 

Us e, = 8 = 0, (13) 

where w is the vertical component of the perturbation velocity U .  The vertical base 
temperature gradient is defined as follows : 

(14) 
The double sign f in front of the modified Rayleigh number R in (11)  corresponds 
to + if the lower surface is hotter than the upper, Tu > TL and - if Tu < TL. This 
convention is kept throughout this work. 

Since there is no external rotation or magnetic field, we assume that the principle 
of exchange of stabilities holds for the spectral problem for disturbances proportional 
to ePut. Therefore, v(R)  is real valued, and the condition for marginal stability is 

G(z) = -e, - VT, = 7 z - h +  1 .  
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given by B = 0. The weakly nonlinear stationary solution of (lo)-( 13) can be found 
by expanding the pressure P ,  and the quantity q, which represents the four- 
component perturbation vector (U,f?), into a double Taylor series in terms of the 
parameters E and 6: 

(15) 

The same expansion is carried out for the modified Rayleigh number: 

q = sq, + 2q1 + ssq, + 012, €6). 

R = R,+ eR1 + SR, +o(E,  6). (16) 

After substituting the expansions (15) and (16) into (10)-(12) and collecting the 
coefficients up to orders E ,  2, and €6, the resulting equations for each order can be 
written in matrix form: 

where DT, q2, I ,  Lo,, Llo, 12,, Moo, No, and F,, are given in Appendix A. 
The solution of the problem (17) delineates the stability domain of the conductive 

base state (7), (8) to infinitesimal disturbances without the effect of dispersion. This 
reference stability domain is described by the relationship R, = R,(q). Since Gasser 
& Kazimi (1976) have computed the above relationship for the Brinkman-extended 
Darcy model, comparison with our results will help assess the validity of the 
momentum equation (3). By inspecting the nonlinear operators given in Appendix A, 
we can see that (18) gives the effect of the nonlinear drag (Forchheimer term) of (3), 
while (19) gives the influence of dispersivity, 6, near the first bifurcation. 

3. Solution of the linear problem 

we obtain the equivalent system 
By eliminating the horizontal components of velocity and Po from the system (17), 

- V'W, f R, V: 8, = 0, 

R, G(z) w, + V28, = 0, 

(20) 

(21) 

where 

The solution of system (20), (21) subject to homogeneous boundary conditions can 
be obtained with separation of variables 

where @(x, y) is the planform function satisfying a Helmholtz equation 

v; @(x, y) = -a2@(z, y). (23) 
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@ is an eigenfunction of (23) with eigenvalue a (horizontal wavenumber). 
Substituting (22) and (23) into (20) and (21), we obtain 

(D2-a2) W o + R o ~ 2 0 0  = 0, (24) 

(25 ) R,G(z) W0+(D2-~' )0 ,  = 0, 

where D = d/dz, D2 = d2/dz2. The boundary conditions associated with (24) and (25) 
are homogeneous (W, = 0, = 0 a t  z = 0 , l ) .  Since G(z)  is positive for 0 < z < 1, every 
eigenvalue R,(a) is a simple eigenvalue of (24) and (25 ) ,  cf. Joseph (1976, Appendix 
D, Vol. 1) .  

We employ the standard Galerkin method to solve the eigenvalue problem (24), 
(25). The following Fourier series expansion is introduced : 

l N  
0,(z)  = - 2 Amsin(mnz) 

a2 m-1 

Equation (24) thus becomes 
N 

(D2-a2) W,fR, C Amsin(mm) = 0. (27) 
m = l  

The particular solution of (27) is given by 

where 

N 
W,(z) = C B,sin(mm), 

m-1 

(29) 

It is easy to show that (28) is also the general solution of (27). We then substitute (26) 
and (28) back into (25) to obtain the following algebraic equation : 

By multiplying (30) by sin (nnz) and integrating between z = 0 and z = 1, we obtain 
a set of N equations 

(31) 
+RiG(z)  m2n2 

m-1 c [ m r  -2 2+a24?n-(7-+  l ) l ;" . ]am = 0, n = 1 , 2 , .  . . , N .  

The integrals I r n  and I;"" are given in Appendix A. 
We first solve the eigenvalue problem (31) for a wide range of a with 7 as a 

parameter. In  order for A,,, to be the non-trivial solution, the determinant of the 
coefficient matrix has to vanish ; an analytic expression for R,(a) is derived and we 
isolate only the positive R,(a) roots. All the algebra and root finding is performed 
with the symbolic manipulation program MAPLE on a SUN 4 computer. The neutral 
curves for the unstably and stably heated layers are given in figure 2(a). To 
determine the necessary truncation level N ,  we used two-, three-, and four-term 
Galerkin expansions and compared the R,(a) result in figure 2 ( 6 ) .  It is obvious that 
N = 3 provides an adequate level of accuracy. 

The critical values are given by the minimum positive eigenvalue R,(a); this 
minimum was found analytically with MAPLE by solving the equation dR,(a)/da = 
0. A tabulation of the results is presented in tables 1 and 2 (recall that Ra, = yIRa,l, 
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A T < O  
50 - 

40 - 

30 - 

20 - 

10 - 

-I 

50 

100 
500 

0 2 4 6 8 1 0  

10 

2o 1 
d . . . , . , . . . ,  

0 2 4 6 8 1 0  
a 

- 140 

- 120 

- 100 

- 80 

- 60 

- 40 

- 20 

Ram 

0 2 4 6 8 1 0  
U 

- 20 

0 2 4 6 8 1 0  
a 

FIQURE 2. Plots of the external Rayleigh number Ram vs. the horizontal wavenumber a. (a )  Effect 
of the internal heat generation parameter 71. ( b )  Effect of truncation level of the Galerkin expansion 
N a t  7 = 10. 

71 acrit Present 

0 3.14 39.48 
10 3.81 27.02 
20 4.19 17.64 
30 4.34 12.92 
40 4.42 10.17 
60 4.50 7.12 
80 4.53 5.47 

100 4.56 4.44 
500 4.64 0.93 

1000 4.65 0.47 

Hwang 

39.48 
27.02 
17.63 
12.91 
10.16 
7.11 
5.47 
4.44 

Racrit 
I 

0 
270.22 
352.73 
387.65 
406.81 
427.20 
437.90 
444.49 
466.45 
469.31 

TABLE 1. Tabulation of the values of the neutral curve, for unstably heated layer, AT > 0 (three- 
term approximation). Comparison with results by Hwang (1971). 

by definition). Our results agree within roundoff error with the critical ( 1 )  in the case 
of zero heat generation (7 = Ra, = 0). A plot of the stability curves is shown in the 
composite figure 3. It contains two curves : the one marked + corresponds to the case 
TL > Tu (unstably heated layer), the - corresponds to TL < Tu. Of course, the sign 
of Ram in the latter case is negative. 
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&t Ra;it Rayit rt 
10 5.72 -94.05 940.55 
20 5.18 -32.56 651.13 
30 5.00 -19.42 582.62 
40 4.92 -13.80 552.01 
60 4.83 -8.73 523.53 
80 4.79 -6.38 510.02 

100 4.76 -5.02 502.14 
500 4.68 -0.96 477.97 

1000 4.67 -0.48 475.03 

TABLE 2. Tabulation of the values of the neutral curve for stably heated layer, AT < 0 
(three-term approximation) 

0.1 1 10 100 1000 10 000 
Porous-medium Rayleigh number, JRa,l 

FIGURE 3. Plot of stability curves for the porous-medium BCnard problem with internal heat 
generation. Kotation : (+  ) heating from below, AT > 0 ;  ( - )  heating from above. AT < 0. 

We can compare our critical values with the data of Hwang (1971) (see table l ) ,  
and Gasser & Kazimi (1976) obtained with a Brinkman-extended model. Although 
free-rigid boundary conditions were used in the above studies, they agree well with 
our results obtained for slip boundary conditions, as shown in table 1. The 
convergence of the Brinkman critical values to these given by the Darcy model 
occurs for small values of the Darcy number, Da < lop3 (Rudraiah, Veerappa & 
Balachandra 1982 ; Selimos & Poulikakos 1985). 

Following the estimation of the critical parameters, we can find the eigenfunction 
vector 4,. We choose to restrict our analysis to  two-dimensional convection. Starting 
with a sinusoidal planform @, we compute v,, w,, and 8, from (17)  and give the results 
in Appendix A, (A 3)-(A 6). Two-dimensional rolls have indeed been shown to be a 
stable bifurcation solution for weakly supercritical convection. 
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4. Bifurcation curve 
The nonlinear problems (18) and (19) produce R, and R,, respectively, and thus 

give the shape of the bifurcation curve in the vicinity of R,. Since R,(a) is a simple 
eigenvalue of (17), the systems (18) and (19) are solvable if 

(32) 

(33) 

(4: * L l O  - 40) + (4; * M o o  - 40) + (4: * No, - 40) = 0,  

(4; ' Lzo ' 40) + (4; ' 60 ' l o )  = 0, 

where ( * ) denotes volume integral over flow field, and 4: is the adjoint eigenfunction 
of (B 1) and (B 2) in Appendix B corresponding to the linear problem (17).  The 
solvability conditions (32) and (33) yield the following relations for R,(q,) and R,(4,) : 

-R,(+w,*O,+G(z)~,*w,)+-~Da(~ - U , ~ U , l ) + ( O ~ ( U o ~  V)O,) = 0 ,  (34) 

(35) 

I4 
8 

-R,( kw,* O,+G(z)  O,* w,) +-R, E ( O,*-lU,l :z G(z) )  = 0. 

It is easy to solve the adjoint eigenvalue problem by employing a simple 
transformation as shown in Appendix B. Taking into consideration (22), the last 
integral of (34) is proportional to the horizontal integral of the cube of @ (cf. Joseph 
1976, Vol. 2, section 73) and thus vanishes for the two-dimensional rolls of 
(A 3)-(A 5 ) .  Equations (34) and (35) then reduce to 

a 
Ro (0: I U0l Gb) ) l e i  1.1 

E <+w,*O,+G(z)O,*w,) E 

The ratios r1,r2 of (36) and (37) are evaluated via numerical integration over the 
domain (y, z )  = [0, A] x [0,1] and the results are tabulated in tables 3 and 4;  B, is the 
amplitude of the 4, vector given in (A 3)-(A 6). 

= -r2(71). (37) R =-  

The expansion (16) for the modified Rayleigh number now becomes 

(38) R = R , + l e ) w D u r , ( ~ ) + 6 - - , ( ~ ) .  

Noting that r , (v)  is always positive and that r,(q) has the sign of -AT, we sketch 
qualitatively the bifurcation diagrams in figure 4 and make the following 
observations : 

(i) The bifurcation curves are asymmetric with respect to E and consist of two 
disjoint branches that originate at distances 6r,(v) below and above the critical value 
R,. This separation is of order d / L ,  so it would be easy to detect experimentally for 
coarse beds. This is the effect of dispersion near the first bifurcation. 

(ii) Unlike the analogous BBnard problem in pure fluids with internal heat 
generation, the bifurcation a t  R, for the porous-medium BBnard problem is not two- 
sided. Moreover, it does not fall into any pitchfork class known. 

(iii) Without internal heat generation, r,(O) = 0, so a symmetric supercritical 
pitchfork bifurcation occurs. This peculiar one-sided bifurcation has been observed 
by Nield &, Joseph (1985) and Georgiadis & Catton (1988~) .  

181 

E 
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0 6.28 
10 5.20 
20 4.20 
30 3.59 
40 3.19 
50 2.89 
60 2.67 
70 2.49 
80 2.34 
90 2.21 

100 2.11 

3.14 
2.30 
1.90 
1.67 
1.50 
1.37 
1.28 
1.19 
1.13 
1.07 
1.02 

0.00 
-2.51 
- 3.23 
-3.10 
-2.88 
-2.68 
-2.51 
-2.36 
-2.24 
-2.13 
-2.04 

TABLE 3. The values of the coefficients of the Rayleigh-number expansion (AT > 0) 

10 9.70 
20 5.71 
30 4.41 
40 3.71 
50 3.27 
60 2.95 
70 2.71 
80 2.52 
90 2.37 

100 2.24 

5.26 
3.09 
2.33 
1.94 
1.69 
1.51 
1.38 
1.28 
1.20 
1.13 

4.74 
5.28 
4.38 
3.76 
3.32 
3.00 
2.76 
2.56 
2.40 
2.27 

TABLE 4. The values of the coefficients of the Rayleigh-number expansion (AT < 0) 

It is obvious that the two bifurcation branches represent different finite-amplitude 
solutions near the onset of convection with internal heat generation. The shape of 
bifurcation implies that a certain form of hysteresis could possibly be observed 
during experiments performed for the purpose of determining the critical Rayleigh 
number ; a different critical value is obtained depending on whether AT approaches 
the critical from below or from above. We do not pursue the study of the stability 
of the bifurcation branches or the bifurcation characteristics of other planforms 
besides straight rolls in this work. Owing to the degeneracy of the spectrum, an 
infinite set of planforms of cellular convection is possible (but not always stable to 
infinitesimal disturbances) in horizontally unbounded domains. 

5. Conclusions 
We have studied basically the effect of first-order nonlinear extensions to the 

Darcy-Boussinesq model on the onset of natural convection in a porous layer. These 
extensions correspond to a drag coefficient and effective thermal conductivity that 
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FIGURE 4. Bifurcation diagrams for the BBnard problem in a fully saturated porous layer with 
internal heat generation. 

depend linearly on the magnitude of the local velocity vector. We have computed the 
neutral curves and showed that the nonlinear terms are more important than 
boundary effects (i.e. Brinkman extension) when internal heat generation is included. 
The bifurcation curves for two-dimensional stationary rolls are also calculated for 
different internal heat generation intensities. Unlike its pure-fluid counterpart, the 
porous BBnard problem exhibits an atypical bifurcation curve which does not belong 
to the common pitchfork class of bifurcations. The bifurcation diagram is asymmetric 
and has two disjoint branches that are separated by a distance proportional to the 
dispersivity (which is proportional to  d / L ) .  The stability characteristics of the 
bifurcation branches and the calculation of bifurcation curves for other planforms 
(e.g. hexagons) is beyond the scope of the present investigation. 

In  view of the scatter in critical Rayleigh numbers reported in experimental 
investigations of related problems, our model can potentially supplement studies of 
the effects of small imperfections on bifurcation. Such studies focus typically on the 
effect of boundary imperfections on the Darcy model (Rees & Riley 1986, 1989). The 
ultimate test of our formulation and of the predicted uncommon bifurcation curve, 
in particular, will come as a result of a direct experimental investigation of the 
porous BBnard problem with isothermal boundaries and internal heat generation. 
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0 0 0 0  0 0 0  0 

0 0 R,G(z) 0 0 0 uo.v 

Appendix A 
The vectors, matrices and operators in equations (17)-(19) are given by 

> 

DT = -Da -,-,-,o , qi = (Ui,Z+, Wi,&)T,  I =  ( 1 , 1 , 1 , 1 ) T ,  (iZ iY :z ) 

The integrals of (31) are defined as 

Irn = G(z)  sin (maz) sin (naz) dz, I ,  - sin (mxz) sin (naz) dz. J, mn - J, 
Hence, I y  = 0 if m-neven, 

17" = g if m = n, 

IT" = $ if m = n, 

I y  = 0 if m =l= n. 

The eigenfunctions of (20) and (21) for two-dimensional cellular convection are 
given by 

(A 3) 

(A 4) 

7c 
u, = --sin (ay) [B, cos (az) + 2B2 cos (2x2) + 3B3 cos (SIR)], 

a 

w, = cos (ay) [B, sin (az) +B2 sin (2nz) +B3 sin (3az)], 

1 
0, = ____ cos (ay) [B,(a2 +a2) sin (m) +B2(4n2 + a2) sin (2a2) * R, a2 

+B3(9n2+a2) sin (3az)], (A 5 )  
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Appendix B 
The adjoint eigenvalue problem to (20) and (21) is obtained with the transpose L?, 

- v W , *  + R, ~ ( z )  v; e; = 0, (B 1) 

~ R , ~ , * + W ;  = 0. (B 2) 

The adjoint problem has the same eigenvalues R,(a) as (20) and (21) and can be 
solved with separation of variables as in (22): 

where @(x, y) is the planform function given by (23). Comparing the systems (20) and 
(21) and (B 1) and (B 2), we can make the following observations: (i) If G(z) = 1 
(7 = 0, no internal heating), only the unstably heated layer becomes unstable, and 
Lo, is self-adjoint. (ii) By making the substitutions 

W: = u2e , ,  e: = w,, (B 4) 

we recover the eigenvalue problem (20) and (21). This implies that  (B 4) gives the 
adjoint eigenfunctions. 
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